ADVANCED GCE MATHEMATICS (MEI)

Mechanics 3

Candidates answer on the Answer Booklet
OCR Supplied Materials:

- 8 page Answer Booklet
- Graph paper
- MEI Examination Formulae and Tables (MF2)

Other Materials Required:

- Scientific or graphical calculator

Thursday 24 June 2010 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $\mathrm{g} \mathrm{m} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .
- This document consists of 8 pages. Any blank pages are indicated.

1 (a) Two light elastic strings, each having natural length 2.15 m and stiffness $70 \mathrm{~N} \mathrm{~m}^{-1}$, are attached to a particle P of mass 4.8 kg . The other ends of the strings are attached to fixed points A and B, which are 1.4 m apart at the same horizontal level. The particle P is placed 2.4 m vertically below the midpoint of AB , as shown in Fig. 1.

Fig. 1
(i) Show that P is in equilibrium in this position.
(ii) Find the energy stored in the string AP.

Starting in this equilibrium position, P is set in motion with initial velocity $3.5 \mathrm{~m} \mathrm{~s}^{-1}$ vertically upwards. You are given that P first comes to instantaneous rest at a point C where the strings are slack.
(iii) Find the vertical height of C above the initial position of P .
(b) (i) Write down the dimensions of force and stiffness (of a spring).

A particle of mass m is performing oscillations with amplitude a on the end of a spring with stiffness k. The maximum speed v of the particle is given by $v=c m^{\alpha} k^{\beta} a^{\gamma}$, where c is a dimensionless constant.
(ii) Use dimensional analysis to find α, β and γ.

2 A hollow hemisphere has internal radius 2.5 m and is fixed with its rim horizontal and uppermost. The centre of the hemisphere is O . A small ball B of mass 0.4 kg moves in contact with the smooth inside surface of the hemisphere.

At first, B is moving at constant speed in a horizontal circle with radius 1.5 m , as shown in Fig. 2.1.

Fig. 2.1
(i) Find the normal reaction of the hemisphere on B.
(ii) Find the speed of B.

The ball B is now released from rest on the inside surface at a point on the same horizontal level as O . It then moves in part of a vertical circle with centre O and radius 2.5 m , as shown in Fig. 2.2.

Fig. 2.2
(iii) Show that, when B is at its lowest point, the normal reaction is three times the weight of B.

For an instant when the normal reaction is twice the weight of B , find
(iv) the speed of B,
(v) the tangential component of the acceleration of B.

3 In this question, give your answers in an exact form.
The region R_{1} (shown in Fig. 3) is bounded by the x-axis, the lines $x=1$ and $x=5$, and the curve $y=\frac{1}{x}$ for $1 \leqslant x \leqslant 5$.
(i) A uniform solid of revolution is formed by rotating the region R_{1} through 2π radians about the x-axis. Find the x-coordinate of the centre of mass of this solid.
(ii) Find the coordinates of the centre of mass of a uniform lamina occupying the region R_{1}.

Fig. 3
The region R_{2} is bounded by the y-axis, the lines $y=1$ and $y=5$, and the curve $y=\frac{1}{x}$ for $\frac{1}{5} \leqslant x \leqslant 1$. The region R_{3} is the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$.
(iii) Write down the coordinates of the centre of mass of a uniform lamina occupying the region R_{2}.
(iv) Find the coordinates of the centre of mass of a uniform lamina occupying the region consisting of R_{1}, R_{2} and R_{3} (shown shaded in Fig. 3).

4 A particle P is performing simple harmonic motion in a vertical line. At time $t \mathrm{~s}$, its displacement $x \mathrm{~m}$ above a fixed point O is given by

$$
x=A \sin \omega t+B \cos \omega t
$$

where A, B and ω are constants.
(i) Show that the acceleration of P , in $\mathrm{m} \mathrm{s}^{-2}$, is $-\omega^{2} x$.

When $t=0, \mathrm{P}$ is 16 m below O , moving with velocity $7.5 \mathrm{~m} \mathrm{~s}^{-1}$ upwards, and has acceleration $1 \mathrm{~m} \mathrm{~s}^{-2}$ upwards.
(ii) Find the values of A, B and ω.
(iii) Find the maximum displacement, the maximum speed, and the maximum acceleration of P. [5]
(iv) Find the speed and the direction of motion of P when $t=15$.
(v) Find the distance travelled by P between $t=0$ and $t=15$.

